1、物理——合振动运动方程求解
两个同方向,同周期的简谐运动方程为x1=4cos(3πt π/3)和3cos(3πt-π/6),试求它们的合振动的运动方程.)
2、x=x1 x2=acos(3πt φ)
a=√4^2 3^2 2*4*3cos[π/3-(-π/6)]=5
tanφ=[4sin(π/3) 3sin(-π/6)]/[4cos(π/3) 3cos(-π/6)]
φ=23°
x=5cos(3πt 23°)。
1、物理——合振动运动方程求解
两个同方向,同周期的简谐运动方程为x1=4cos(3πt π/3)和3cos(3πt-π/6),试求它们的合振动的运动方程.)
2、x=x1 x2=acos(3πt φ)
a=√4^2 3^2 2*4*3cos[π/3-(-π/6)]=5
tanφ=[4sin(π/3) 3sin(-π/6)]/[4cos(π/3) 3cos(-π/6)]
φ=23°
x=5cos(3πt 23°)。