数学这门学科,对很多学子来说可能都是一大难题,而对数学*而言,就可能是相当于在看天书了。在当今世界中,有*数学难题难住了大部分人,你敢不敢和小编一起去*文化中感受一下?
“*大奖”七大数学难题:
1、np完全问题
简介:
np就是non-deterministicpolynomial的问题,也即是多项式复杂程度的非确定性问题。
而如果任何一个np问题都能通过一个多项式时间算法转换为某个np问题,那么这个np问题就称为np完全问题(non-deterministicpolynomialcompleteproblem)。np完全问题也叫做npc问题。
有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。
这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。
完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,*终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。
人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题存在一个确定性算法,可以在多项式时间内直接算出或是搜寻出正确的答案呢?这就是*的np=p?的猜想。
解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定np完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。
详细*:
p类问题:所有可以在多项式时间内求解的判定问题构成p类问题。判定问题:判断是否有一种能够解决某一类问题的能行算法的研究课题。
np类问题:所有的非确定性多项式时间可解的判定问题构成np类问题。非确定性算法:非确定性算法将问题分解成猜测和验证两个阶段。算法的猜测阶段是非确定性的,算法的验证阶段是确定性的,它验证猜测阶段给出解的正确性。设算法a是解一个判定问题q的非确定性算法,如果a的验证阶段能在多项式时间内完成,则称a是一个多项式时间非确定性算法。有些计算问题是确定性的,例如加减乘除,只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式能推出下一个质数是多少呢?这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式(polynomial)时间内算出来,就叫做多项式非确定性问题。
npc问题:np中的某些问题的复杂性与整个类的复杂性相关联.这些问题中任何一个如果存在多项式时间的算法,那么所有np问题都是多项式时间可解的.这些问题被称为np-完全问题(npc问题)。
例子:
在一个周六的晚上,你参加了一个*的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是*的np=p?的猜想。
不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中*突出的问题之一。它是斯蒂文·考克于1971年陈述的。