__
【导语】以下是由
数学上学期期末复习训练题
一、选择题(每小题3分,共30分):
1.下列变形正确的是()
a.若x2=y2,则x=yb.若,则x=y
c.若x(x-2)=5(2-x),则x=-5d.若(m n)x=(m n)y,则x=y
2.截止到2010年5月19日,已有21600名中外记者成为上海*会的注册记者,将21600用科学计数法表示为()
a.0.216×105b.21.6×103c.2.16×103d.2.16×104
3.下列计算正确的是()
a.3a-2a=1b.x2y-2xy2=-xy2
c.3a2 5a2=8a4d.3ax-2xa=ax
4.有理数a、b在数轴上表示如图3所示,下列结论错误的是()
a.b
c.d.
5.已知关于x的方程4x-3m=2的解是x=m,则m的值是()
a.2b.-2c.2或7d.-2或7
6.下列说*确的是()
a.的系数是-2b.32ab3的次数是6次
c.是多项式d.x2 x-1的常数项为1
7.用四舍五入把0.06097精确到千分位的近似值的有效数字是()
a.0,6,0b.0,6,1,0c.6,0,9d.6,1
8.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,这所列方程为()
a.13x=12(x 10) 60b.12(x 10)=13x 60
c.d.
9.如图,点c、o、b在同一条直线上,∠aob=90°,
∠aoe=∠dob,则下列结论:①∠eod=90°;②∠coe=∠aod;③∠coe=∠dob;④∠coe ∠bod=90°.其中正确的个数是()
a.1b.2c.3d.4
10.如图,把一张长方形的纸片沿着ef折叠,点c、d分别落在m、n的位置,且∠mfb=∠mfe.则∠mfb=()
a.30°b.36°c.45°d.72°
二、填空题(每小题3分,共18分):
11.x的2倍与3的差可表示为.
12.如果代数式x 2y的值是3,则代数式2x 4y 5的值是.
13.买一支钢笔需要a元,买一本笔记本需要b元,那么买m支钢笔和n本笔记本需要元.
14.如果5a2bm与2anb是同类项,则m n=.
15.900-46027/=,1800-42035/29”=.
16.如果一个角与它的余角之比为1∶2,则这个角是度,这个角与它的补角之比是.
三、解答题(共8小题,72分):
17.(共10分)计算:
(1)-0.52 ;
(2).
18.(共10分)解方程:
(1)3(20-y)=6y-4(y-11);
(2).
19.(6分)如图,求下图阴影部分的面积.
20.(7分)已知,a=3x2 3y2-5xy,b=2xy-3y2 4x2,求:
(1)2a-b;(2)当x=3,y=时,2a-b的值.
21.(7分)如图,已知∠boc=2∠aob,od平分∠aoc,∠bod=
14°,求∠aob的度数.
22.(10分)如下图是用棋子摆成的“t”字图案.
从图案中可以看出,第1个“t”字型图案需要5枚棋子,第2个“t”字型图案需要8枚棋子,第3个“t”字型图案需要11枚棋子.
(1)照此规律,摆成第8个图案需要几枚棋子?
(2)摆成第n个图案需要几枚棋子?
(3)摆成第2010个图案需要几枚棋子?
23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?
根据下面思路,请完成此题的解答过程:
解:设星期三中午小明从家骑自行车准时到达学校门口所用时间t小时,则星期一中午小明从家骑自行车到学校门口所用时间为小时,星期二中午小明从家骑自行车到学校门口所用时间为小时,由题意列方程得:
24.(12分)如图,射线om上有三点a、b、c,满足oa=20cm,ab=60cm,bc=10cm(如图所示),点p从点o出发,沿om方向以1cm/秒的速度匀速运动,点q从点c出发在线段co上向点o匀速运动(点q运动到点o时停止运动),两点同时出发.
(1)当pa=2pb时,点q运动到的
位置恰好是线段ab的三等分
点,求点q的运动速度;
(2)若点q运动速度为3cm/秒,经过多长时间p、q两点相距70cm?
(3)当点p运动到线段ab上时,分别取op和ab的中点e、f,求的值.
参考答案:
一、选择题:bddca,cdbcb.
二、填空题:
11.2x-3;12.1113.am bn
14.315.43033/,137024/31”16.300.
三、解答题:
17.(1)-6.5;(2).
18.(1)y=3.2;(2)x=-1.
19..
20.(1)2x2 9y2-12xy;(2)31.
21.280.
22.(1)26枚;
(2)因为第[1]个图案有5枚棋子,第[2]个图案有(5 3×1)枚棋子,第[3]个图案有(5 3×2)枚棋子,一次规律可得第[n]个图案有[5 3×(n-1)=3n 2]枚棋子;
(3)3×2010 2=6032(枚).
23.;;由题意列方程得:,解得:t=0.4,
所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(km),
即:星期三中午小明从家骑自行车准时到达学校门口的速度为:
4.5÷0.4=11.25(km/h).
24.(1)①当p在线段ab上时,由pa=2pb及ab=60,可求得:
pa=40,op=60,故点p运动时间为60秒.
若aq=时,bq=40,cq=50,点q的运动速度为:
50÷60=(cm/s);
若bq=时,bq=20,cq=30,点q的运动速度为:
30÷60=(cm/s).
②当p在线段延长线上时,由pa=2pb及ab=60,可求得:
pa=120,op=140,故点p运动时间为140秒.
若aq=时,bq=40,cq=50,点q的运动速度为:
50÷140=(cm/s);
若bq=时,bq=20,cq=30,点q的运动速度为:
30÷140=(cm/s).
(2)设运动时间为t秒,则:
①在p、q相遇前有:90-(t 3t)=70,解得t=5秒;
②在p、q相遇后:当点q运动到o点是停止运动时,点q*多运动了30秒,而点p继续40秒时,p、q相距70cm,所以t=70秒,
∴经过5秒或70秒时,p、q相距70cm.
(3)设op=xcm,点p在线段ab上,20≦x≦80,ob-ap=80-(x-20)=100-x,ef=of-oe=(oa )-oe=(20 30)-,
∴(ob-ap).
__